Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 134, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882703

RESUMO

BACKGROUND: Calcium ions (Ca2+), secondary messengers, are crucial for the signal transduction process of the interaction between plants and pathogens. Ca2+ signaling also regulates autophagy. As plant calcium signal-decoding proteins, calcium-dependent protein kinases (CDPKs) have been found to be involved in biotic and abiotic stress responses. However, information on their functions in response to powdery mildew attack in wheat crops is limited. RESULT: In the present study, the expression levels of TaCDPK27, four essential autophagy-related genes (ATGs) (TaATG5, TaATG7, TaATG8, and TaATG10), and two major metacaspase genes, namely, TaMCA1 and TaMCA9, were increased by powdery mildew (Blumeria graminis f. sp. tritici, Bgt) infection in wheat seedling leaves. Silencing TaCDPK27 improves wheat seedling resistance to powdery mildew, with fewer Bgt hyphae occurring on TaCDPK27-silenced wheat seedling leaves than on normal seedlings. In wheat seedling leaves under powdery mildew infection, silencing TaCDPK27 induced excess contents of reactive oxygen species (ROS); decreased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); and led to an increase in programmed cell death (PCD). Silencing TaCDPK27 also inhibited autophagy in wheat seedling leaves, and silencing TaATG7 also enhanced wheat seedling resistance to powdery mildew infection. TaCDPK27-mCherry and GFP-TaATG8h colocalized in wheat protoplasts. Overexpressed TaCDPK27-mCherry fusions required enhanced autophagy activity in wheat protoplast under carbon starvation. CONCLUSION: These results suggested that TaCDPK27 negatively regulates wheat resistance to PW infection, and functionally links with autophagy in wheat.


Assuntos
Cálcio , Resistência à Doença , Doenças das Plantas , Triticum , Aminoácidos , Erysiphe , Proteínas Quinases , Plântula , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Genes de Plantas
2.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806346

RESUMO

As essential calcium ion (Ca2+) sensors in plants, calcium-dependent protein kinases (CDPKs) function in regulating the environmental adaptation of plants. However, the response mechanism of CDPKs to salt stress is not well understood. In the current study, the wheat salt-responsive gene TaCDPK27 was identified. The open reading frame (ORF) of TaCDPK27 was 1875 bp, coding 624 amino acids. The predicted molecular weight and isoelectric point were 68.905 kDa and 5.6, respectively. TaCDPK27 has the closest relationship with subgroup III members of the CDPK family of rice. Increased expression of TaCDPK27 in wheat seedling roots and leaves was triggered by 150 mM NaCl treatment. TaCDPK27 was mainly located in the cytoplasm. After NaCl treatment, some of this protein was transferred to the membrane. The inhibitory effect of TaCDPK27 silencing on the growth of wheat seedlings was slight. After exposure to 150 mM NaCl for 6 days, the NaCl stress tolerance of TaCDPK27-silenced wheat seedlings was reduced, with shorter lengths of both roots and leaves compared with those of the control seedlings. Moreover, silencing of TaCDPK27 further promoted the generation of reactive oxygen species (ROS); reduced the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); aggravated the injury to photosystem II (PS II); and increased programmed cell death (PCD) in wheat leaves under NaCl treatment, confirming that the TaCDPK27-silenced seedlings exhibited more NaCl injury than control seedlings. Taken together, the decrease in NaCl tolerance in TaCDPK27-silenced seedlings was due to excessive ROS accumulation and subsequent aggravation of the NaCl-induced PCD. TaCDPK27 may be essential for positively regulating salt tolerance in wheat seedlings.


Assuntos
Tolerância ao Sal , Triticum , Cálcio/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Plântula/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Triticum/metabolismo
3.
Front Plant Sci ; 13: 904933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812918

RESUMO

Metacaspases (MCAs), a family of caspase-like proteins, are important regulators of programmed cell death (PCD) in plant defense response. Autophagy is an important regulator of PCD. This study explored the underlying mechanism of the interaction among PCD, MCAs, and autophagy and their impact on wheat response to salt stress. In this study, the wheat salt-responsive gene TaMCA-Id was identified. The open reading frame (ORF) of TaMCA-Id was 1,071 bp, coding 356 amino acids. The predicted molecular weight and isoelectric point were 38,337.03 Da and 8.45, respectively. TaMCA-Id had classic characteristics of type I MCAs domains, a typical N-terminal pro-domain rich in proline. TaMCA-Id was mainly localized in the chloroplast and exhibited nucleocytoplasmictrafficking under NaCl treatment. Increased expression of TaMCA-Id in wheat seedling roots and leaves was triggered by 150 mM NaCl treatment. Silencing of TaMCA-Id enhanced sensitivity of wheat seedlings to NaCl stress. Under NaCl stress, TaMCA-Id-silenced seedlings exhibited a reduction in activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), higher accumulation of H2O2 and O 2 . - , more serious injury to photosystem II (PSII), increase in PCD level, and autophagy activity in leaves of wheat seedlings. These results indicated that TaMCA-Id functioned in PCD through interacting with autophagy under NaCl stress, which could be used to improve the salt tolerance of crop plants.

4.
Ecotoxicol Environ Saf ; 225: 112761, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509161

RESUMO

Salt stress, as an abiotic stress, limits crops production worldwide. Autophagy and programmed cell death (PCD) have been functionally linked to plant adaptation to abiotic stress. However, the relation of autophagy and PCD is still under debate and the mechanism behind remains not fully understood. In this study, salt-tolerant wheat cultivar Jimai22 was used as the experimental material, and 150 mM NaCl was added to the hydroponic culture to test the effect of salt treatment. The results showed that NaCl stress enhances autophagic activity and induced occurrence of PCD in roots and leaves of wheat seedlings. Then, the barley stripe mosaic virus-induced silencing (BSMV-VIGS) method was used to inhibit autophagy by silencing the expression of ATG2 or ATG7. The results showed that silencing of ATG2 or ATG7 significantly inhibited autophagy and impaired the tolerance of wheat to NaCl stress. Moreover, silencing of ATG2 or ATG7 disrupted the absorption of Na, Cl, K and Ca elements and led to subsequent disequilibrium of Na+, Cl-, K+ and Ca2+, induced generation of excess reactive oxygen species (ROS), decreased the antioxidant activity, damaged photosynthesis apparatus, increased the level of PCD and led to differential expression of the genes, two metacaspase genes, cysteine-rich receptor-like kinase (CRK) 10, and CRK26 in leaves of wheat seedlings under NaCl stress. The effect of the inhibitor 3-methyladenine (3-MA) on roots and leaves of wheat seedlings was in accordance with that of ATG2 and ATG7 silencing. Our results suggest that autophagy negatively regulates salt-induced PCD, or limits the scale of salt-induced PCD to avoid severe tissue death in wheat seedlings.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Plântula , Triticum , Apoptose , Autofagia , Estresse Salino , Plântula/genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...